
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 5, Oct-Nov, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 1

Dynamic Skyline Computation in a Mobile EnvironmentDynamic Skyline Computation in a Mobile EnvironmentDynamic Skyline Computation in a Mobile EnvironmentDynamic Skyline Computation in a Mobile Environment

Myung Kim
1
, Jihyun Kim

2

1,2Department of Computer Science and Engineering, EwhaWomans University,

Seoul, Korea

Abstract
Skyline computation is an operation that extracts from a

multidimensional data set the maximal subset whose elements

optimally satisfy the user's requirements. This operation is

considered to be useful to a mobile user, if such subset can be

promptly computed from the data set that surrounds the user

within a certain distance limit at any given time. In this work, we

propose an efficient algorithm for continuously providing a

mobile user with such skylines of the data sets located near

him/her.The algorithm computes the skylines in sequence

according to the movements of the mobile user.The i-th skyline

in the sequence is computed by updating the (i-1)-th skyline. The

performance of the proposed algorithm is shown by experiments.

Keywords:Skyline Computation,Recommendation Service,

Mobile User, Dynamic environment.

1. Introduction

The skyline of a multidimensional data set consists of all

the elements that satisfy the users’ requirements better

than any other elements of the given set. Skyline

computation is a very useful operation in decision making

especially when dealing with a large data set. Recently, a

lot of skyline computation algorithms have been reported

for various environments [1, 2, 4, 6, 8, 12]. Here, we focus

on a mobile environment meaning that the user is moving

around, and is interested in obtaining instantly the skyline

of the data set (or objects) that are located within a certain

distance from him/her. We are interested in providing a

mobile user with such skyline at any given time.

Formally, the skyline of a multidimensional data set is

defined as follows [2]. Let A be a d dimensional data set,

and let p = (p1, p2, …,pd)and q = (q1, q2, … , qd) be data

elements in A, where pi and qi, 1≤i≤ d, are the values of

dimension i of p and q, respectively. If pi≤qi, for all i, and

pj<qj for at least one j, 1≤i, j≤ d, then p is said to

dominateq. The skyline of A is defined to be the maximal

subset whose elements are not dominated by any other

elements of A.

For example, Fig. 1(a) shows a 2 dimensional data set

consisting of 8 elements whose (X, Y) coordinates are (1, 5),

(3, 6), (2, 4), (3, 2), (4, 1), (4, 3), (5, 4) and (6, 2). Here, we

can see that data element b = (3, 6) is dominated by data

element a = (1, 5), since 1 ≤ 3, 5≤6, and 1 < 3. Data

elements a, c, d, and e form the skyline of the set, since

they are not dominated by any other elements of the set.

Note that all the data elements that are dominated by at

least one of the skyline points are located above the line

named “skyline” in the figure. We now apply the skyline

computation to a restaurant recommendation problem.

Assume that the data elements in Fig. 1 represent

restaurants, the X and Y axes represent the average food

price and the reputation of the corresponding restaurants,

respectively. Assume also that the smaller rank is better.

Then, restaurants a, c, d, and e are considered to be ‘good

restaurants’ that can be recommended to the user.

Fig. 1 A 2-dimensional data set and its skyline.

Let us now turn our attention to a situation where users are

moving around, and each of them wants to find quality

restaurants nearby. In this case, we can see that the

multidimensional data sets of users’interests (i.e., neighbor

regions)vary depending on the location of the users at

query time. Here, we propose an algorithm for efficiently

computing the skylines for such mobile users. This

algorithm can be used for a recommendation system that

serves many mobile users or clients concurrently.

Our algorithm works as follows: The entire plane (or a

map), on which the users are moving around, is partitioned

into fine grained grid cells. Let’s say, the plane is divided

into 1km × 1km square grid cells. A mobile user, p, is

initially placed at a grid cell on the map, as shown in Fig.

2(a). Assume that user p is interested in finding a quality

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 5, Oct-Nov, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 2

restaurant in the surrounding area of 3 cells × 3 cells. Here

R1 is such region.We first compute the skyline,S1, of the

data set in R1.

Mobile users can move in 8 directions: up, down, left, right,

upper left, upper right, lower left, and lower right. Fig. 2(a)

shows that user p is at the center of region R1and p’s next

move out of region R1is in the upper right direction.

Sometime later, user p will arrive at the center of region

R2,as in Fig. 2(b). The algorithm then computes the skyline

of the data set in region R2, which is S2.Skyline

computation will be carried out similarly, whenever user p

enters a neighboring grid cell.Thus, for the example in Fig.

2, skylines, S1, S2, S3, and S4, are computed for R1, R2, R3,

and R4 in sequence.

 (a) (b)

 (c) (d)

Fig. 2 Userp’s movement and the corresponding regions of interests.User

p moves from the center of R1 to the centers of R2, R3, and R4 in sequence.

The algorithm computes the skylines for regions R1,

R2, ... ,Ri-1, Ri,Ri+1, ... in sequence. The skyline,Si, for region

Riis obtained by updating Si-1 for region Ri-1. In order to

efficiently do so, we developed two operations called

DeleteBlock() and AddBlock(). DeleteBlock() is used to

eliminatethe influence of area Ri-1- Ri. AddBlock() is used

to include the influence of area Ri - Ri-1.Performance

evaluation has been conducted,and shows that the

algorithm is efficient and useful.

The paper is organized as follows: In Section 2 we briefly

overview the background research results. In Section 3 we

propose our skyline computation algorithm. In Section 4,

performance evaluation is given. In Section 5, we conclude

our work.

2. Related Works

Skyline operation was first introduced in [2]. Since then a

lot of research has been conducted to develop efficient

algorithms for skyline computation [1, 2, 3, 6, 9,

11,14].Skyline computation algorithms assume various

conditions, and a ‘mobile environment’ is considered to be

one such condition that recently receives a lot of attention

[4, 5, 7, 8, 10, 12, 13].

Early attempt [1, 2, 11, 14] is to use the location

information of the user to extract from the original data set

the subset of interest to the user. Skyline is computed on

the selected subset. R-tree index, Grid index, or angle-

based partitioning schemes are used to speed up the

execution of the skyline computation.

Algorithm in [3,4, 10] continuously computes the skylines

from the data sets surrounding the mobile user. It uses a

grid structure to manage the entire data set and creates a

skyline influence region to filter out the unnecessary

skyline processing over the data sets. However, this

method assumes that the distribution of the data should be

uniform and the performance of the algorithm is affected

by the size of grid cells.

Algorithms proposed in [6, 7, 8] also assume a mobile

environment. [6] and [8] uses a quadtree structure in order

to represent 2-dimensional space efficiently, and [7]

computes extended skyline that contains quality data

elements that is near the mobile user. However, these are

not real time algorithms.

A distributed mobile environment is assumed in [5, 9,12,

13].Skylines are computed in sequence from the data

stream, one skyline per sliding window. It maintains

separate timer for each mobile user, thus maintenance

overhead is relatively high. The algorithm proposed in [5]

consists of three processing phases, and each phase is to

reduce the network bandwidth consumption, network

delay and query response time. However, in case the user

moves around quickly, the overhead for index

maintenance and skyline updates becomes very high.

The reported algorithms are not very much adequate to

serve many mobile users in real time. In this paper, we

propose a skyline computation algorithm for mobile users

in such a way that the skyline for each user is updated as

soon as he/she moves to a predetermined grid type region.

Thus, skylines are computed in sequence. In order to speed

up the execution of the algorithm, we propose two

functions, AddBlock() and DeleteBlock(), to efficiently

update the pre-computed skyline in sequence. In our

algorithm, we assume only one user. However, it can serve

a lot of users simultaneously.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 5, Oct-Nov, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 3

3. Skyline Computation for a Mobile User

Consider a two dimensional space R as in Fig.3 (a).

Assume that R is partitioned into an � × � grids, and R(i, j)

represents the cell (or region) located at i-th row and j-th

column of the grids. We also define‘wide region’,WR(i, j),

as the block (or region) that consists of R(i, j) and the

surrounding eight cells, that is placed at left, right, up,

down, upper left, upper right, lower left, and lower right

corner of R(i, j). Formally, WR(i, j) consists of R(k, l),

where � − 1 ≤ 	, � ≤ � + 1 .

Suppose that DR is a multidimensional data set that we are

concerned, and their elements are placed on the 2

dimensional spaceR, as defined above. It is like restaurants

(DR) are all over the place on the map (R). The set of data

elements of R, i.e., DR, that is located inside R(i, j) is called

DR(i, j). The skyline of DR(i, j) is called SR(i, j). DWR(i, j)

represents the data set that consists of the data elements of

DR that belongs to WR(i, j). SWR(i, j) is the skyline of the

set DWR(i, j). See figure 3.

 (a) Regions on the map (b) Data sets and their skylines for regions

Fig. 3 A 2-dimensional space and the definitions of regions and data sets

located on the regions.

Suppose now that a user moves around on the map (R), and

wants to find a set of quality restaurants nearby. The

purpose of our algorithm is to provide him/heras soon as

he/she enters R(i, j)good quality restaurants inWR(i, j), that

is, SWR(i, j). Formally speaking, assume that the user is

initially in R(i0, j0), and moves in sequence to R(i1, j1), R(i2,

j2), R(i3, j3), … , R(ik-1, jk-1), R(ik, jk), …, where |���� −

��| ≤ 1 and |���� − ��| ≤ 1. That is, the user moves to one

of the eight adjacent regions. Our algorithm computes

SWR(i0, j0), SWR(i1, j1), SWR(i2, j2), SWR(i3, j3), … ,

SWR(ik-1, jk-1), SWR(ik, jk), … in sequence. Furthermore,

SWR(ik, jk) is computed as soon as the user enters region

R(ik, jk).Our skyline computation algorithm can be

described as follows.

We explain the algorithm in detail. The first step of the

algorithm is the initialization step, and is thus executed

only once right before the recommendation service begins.

However, in case the original data set DR gets updated later

on, each SR(i, j) can be updated independently and

efficiently. For example, if a data element p is inserted to

DR(i, j),p only needs to be compared with the elements in

SR(i, j). If data element q is deleted from DR(i, j)-SR(i, j),

no change should be done on SR(i, j). If q is from SR(i, j),

then the elements in DR(i, j)-SR(i, j) that are dominated by

q need to be compared with all the element of SR(i, j).

Algorithm 1:

Dynamic Computation of Skylines for a mobile user

[Step 1] [Compute the skyline for each R(i, j)]

Scan the multidimensional data set DR, and

partition the elements into DR(i, j), 0 ≤ � ≤

� − 1 , 0 ≤ � ≤ � − 1 . Compute the

skylineSR(i, j) for each data set DR(i, j).

[Step 2] [DynamicSkyline computation for user Q]

Supposer that the user Q is initially located at

R(i0, j0). Compute SWR(i0, j0). Keep track of

Q’s movement. As soon as Q moves from R(ik-

1, jk-1) to one of its eight neighbor region, R(ik,

jk), compute SWR(ik, jk) by updating SWR(ik-1,

jk-1). Do this until the user stops moving.

The second step of the algorithm is in fact a continuous

query processing part. In this algorithm, we describe the

step only for one mobile user. However, query processing

for many users can also be concurrently done in a similar

manner. The mobile user’s initial position isR(i0, j0). Thus,

we first compute SWR(i0, j0), which is the skyline of

DWR(i0, j0). In other words, SWR(i0, j0) is the skyline of the

data set that is located in wide region WR(i0, j0) whose

center is R(i0, j0).

During the query processing, let us say that the user is in

R(ik-1, jk-1) andis about to move to R(ik, jk). We then update

the current skyline SWR(ik-1, jk-1) to obtain the next skyline

SWR(ik, jk).At this moment, let us take a moment to think

about how to compute SWR(ik, jk), for some 	 ≥ 0. One

might suggest to compute SWR(ik, jk), for all 	 ≥ 0 in

advance in step 1.However, we assume that data set DR(i, j)

located in each R(i, j) gets updated frequently. One such

example might be the data on the restaurants in the street.

They get updated frequently. Thus we decide to compute

SWR(ik, jk) on the fly.

Let us now turn our attention to the computation of

SWR(i,j), which is the skyline for the wide region whose

center is R(i, j). One simple way of doing it is to

obtainDWR(i, j) from ⋃ ⋃ ��(, �)
���
�����

���
����� and

compute the skyline from DWR(i, j) directly. However, it

would be very time consuming to compute the skyline this

way, in case therecommendation system serves many

mobile users.Thus, we propose an algorithm for updating

the current skyline SWR(ik-1, jk-1) to get the next skyline

SWR(ik, jk).

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 5, Oct-Nov, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 4

We describe the scheme in detail. We are interested in

computing the skyline for wide region SWR(i, j), assuming

that the skyline for region R(k, l)’s, SR(k, l), � − 1 ≤ 	 ≤

� + 1 and � − 1 ≤ � ≤ � + 1, were already computed. It is

obvious that the skyline for wide regionSWR(i, j) is a subset

of ⋃ ⋃ ��(, �)
���
�����

���
����� . In fact, SWR(i, j) can be

represented by setA = ⋃ ⋃ !�(, �)
���
�����

���
����� , and each

TR(i, j) of set Ais a subset of SR(i, j), as in Fig. 4.In the

figure,white circles represent SR(i, j)’s and black circles

inside white circles represent TR(i, j)’s. Note that the

elements in set SR(i, j)-TR(i, j) are the newly found

elements during the computation of SWR(i, j), that are

dominated by an element in set ⋃ ⋃ ��(, �)
���
�����

���
����� ,

where 	 ≠ � and � ≠ �. In addition, for each SR(i, j), we

define UR(i,j,k,l), � − 1 ≤ 	 ≤ � + 1 , � − 1 ≤ � ≤ � +

1, 	 ≠ �, and � ≠ �, such that the elements of UR(i,j,k,l) are

the elements of SR(i, j) that are dominated by an element

of SR(k, l). Thus there are 8 UR(i,j,k,l)’s for SR(i, j) since

	 ≠ �, and � ≠ �.

Fig. 4 Skyline for wide region SWR(i, j).

Fig. 5 Renamed regions and data sets.

We now describe the computation of SWR(i, j). In order to

simplify the description of the algorithm, we rename the

terms regarding regions and data sets as in Fig. 5. First, 9

regions (or grid cells) of WR(i, j) are renamed B0, B1, ... ,

B8. Skyline for Bi, 0 ≤ � ≤ 8, is renamed Si.The subset of

Si that consists of SWR(i, j) is called Ti. The set Si- Ti is

divided into 8 sets, Uio, Ui1, , Uik, ... ,Ui8, where � ≠ 	

and the union of Ti and⋃ $��
%
��& becomes Si. Note that the

elements of Uik are the elements of Si but they are

dominated by an element of Sk, thus they do not belong to

SWR(i, j).

Suppose that the mobile user is initially at R(i, j).We first

need to compute SWR(i, j). Computation of SWR(i, j) is

given in step 1 of Algorithm 2. In the algorithm, SWR

represents the skyline for the wide region whose center is

the region where the mobile user is currently located.

Initially, SWR is the same is SWR(i, j). Note that

AddBlock() is called 9 times. When AddBlock (k) is called,

Tk and Uki are computed, and all the previously computed Ti

and Uij, 0 ≤ �, � ≤ 	 − 1 , are updated. AddBlock() is

described in Algorithm 3.

As mentioned earlier, the purpose of our algorithm is to

provide the mobile user with the skyline of the wide region

which he/she just moves in. Thus, skylines are updated in

sequence by the while loop of step 2 of algorithm 2.Every

update of the skyline is done in two phases as follows. In

order to simplify the description, we rename the blocks so

that blocks B0, B1, ... ,Ba are no longer inside the wide

region of the mobile user. For example, if the user moves

right, B0, B1, B2 are such blocks. If the user moves

diagonally, B0, B1, B2, B3, B4 are such blocks. In the first

phase, the skyline SWR is updated by eliminating the

influence of those blocks. Blocks are eliminated one by one

by DeleteBlock(k), which is described in Algorithm 4.

What is done in DeleteBlock(k) is to find the data elements

in Ujk, 	 + 1 ≤ � ≤ 8 that were dominated by an element

of Tk.We then check to see if they can be skyline elements

again. Newly found skyline elements are then inserted to

the set they belong to.

Let us take a look at an example. In case that the user

moves to the right, we delete T0, T1, T2, and update T3~T8

so that the influence of T0, T1, T2 is removed. Suppose that

DeleteBlock(0) and DeleteBlock(1) were already called,

and DeleteBlock(2) is about to be called. That means, it is

time to delete T2, and to update T3~T8. In order to do so, we

use U32, U42, ... ,U82. These are the elements that were

deleted because they are dominated by an element of T2.

Now these Ui2, 3 ≤ � ≤ 8 , are compared with all Tj, 3

≤ j ≤ 8 and � ≠ � , are compared. If the elements of

Ui2,≤ � ≤ 8 are not dominated by any element in this step,

they come back to the corresponding skyline set, which is

Ti.

In the second phase of the step 2 of algorithm 2 is to add

skyline elements from the blocks that are inserted to the

wide region of the mobile user. For the simplicity, assume

that B0, B1, ... ,B8-a are remaining blocks and B8-a+1, ... , B8

are the blocks to be added. Insertion of these blocks are

done by calling AddBlocks(k), 8 –a + 1 ≤ 	 ≤ 8, where a

is the number of blocks to be added.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 5, Oct-Nov, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 5

Algorithm 2:

Computationof the skylines SWRin sequence

[Step 1] [Computation of the first skyline]

for (k = 0; k< 9; k++)

AddBlock (k);

[Step 2] [Adjust the skyline acording to the next move]

while (1) {

(1) determine the next move; rename the

blocks so that {B0, B1, ... , Ba } are the

blocks to be out of the mobile user’s

next wide region. If the move is up,

down, left, or right a = 2, otherwise a =

4;

(2) for (k = 0; k<= a; k++)

DeleteBlock(k);

(3) rename the remaining blocks

{ B0, B1, ... , B8-a}

(4) assume that { B8-a+1, ... , B8 } are the

blocks to be added to the wide region of

the mobile user.

(5) for (k = 8-a+1; k<= 8; k++)

AddBlock(k);

}

Algorithm 3: AddBlock(k)

Tk = Sk;

for (m = 0, m<k; m++){

 // compare Tm with Tk

for each (p, q), where p in Tm, and q is in Tk {

if p is dominated by q, movep toUmk ;

else if q is dominated by p, moveq toUkm ;

else p stays in Tm, and q stays in Tk;

}

Algorithm 4: DeleteBlock(k)

Delete Tkfrom SWR and discard Uki’s;

for (m = k + 1;m< 9; m++){

for (j = m + 1; j< 9; j++){

 // compare Ujk with Tm

for each (p, q) where p in Ujk and q is in Tm{

 if p is dominated by q, movep to Ujm;

 else if q is dominated by p, moveq to Umj;

}

 if Ujk is not empty, move all the elements to Tj.

}

}

4. Performance Evaluation

We conducted some experiments on a PC equipped with a

2.40GHz Intel Q6600 CPU and 4.0GB of main

memory.The test programs are in C, and run in the

Microsoft .NET environment.

The purpose of our experiments is to show how efficiently

the proposed algorithm runs so that it can be used to serve

a lot of mobile users concurrently. Thus it is assumed that

the area the users are moving around is already divided

into many grid cells, and the data set the users are

interested in is already partitioned, and their skylines are

computed. In other words, for each grid cell R(i, j), Data

set DR(i, j) is provided and its skylineSR(i, j) is computed

using previously published efficient algorithms [5, 6, 7].

With such assumptions, we only evaluate the performance

of computing SWR(i, j)’s in sequence.

We use artificially generated four data sets, and their

properties are given in Table 1. What is important in the

data set is the ratio of TR(i, j) to SR(i, j). The smaller the

ratio, the more likely the performance of the algorithm can

be better. That is, the proposed algorithm is expected to

run better for the data set A than for the date sets C or D.

Table 1: Characteristics of the test data sets

Data

Sets

Average

number of

elements in

SR(i, j)

Average

number of

elements in

TR(i, j)

Ratio ofTR(i, j)

to SR(i, j)

A 50 18 36%

B 50 28 56%

C 50 40 80%

D 50 50 100%

We ran the program with the four data sets, as given in

Table 1. The test results are shown in Fig. 5. It is assumed

that the user moves randomly in any of the 8

directions.The chart in Fig. 5 shows the execution time of

the algorithm for the cases that the user made 2500moves,

5000moves, 7500moves, and 10000 moves, respectively.

Fig. 5 Skyline for wide region SWR(i, j).

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 5, Oct-Nov, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 6

For example, when the number of moves is 5000, the time

taken by the algorithm with data sets, A, B, C, D are

2.98sec, 6.36 sec, 10.71 sec, and 14.80 sec, respectively. It

shows that the smaller the ratio of TR(i, j) to SR(i, j), the

better the algorithm works. In case of data set A, the size

of TR(i, j) is only 36% of SR(i, j). Note that with data set D,

no update can be done. In other words, when a skyline is

computed for the user, no previously computed skylines

can be used for time saving. Fig. 5 shows that the

proposed algorithm works well.

The efficiency of the proposed algorithm mainly depends

on how much is saved by DeleteBlock() and AddBlock().

When a block Bi is added to SWR by AddBlock(), Uio,

Ui1, , Uik, ... ,Ui8 are computed. These are later used by

DeleteBlock(). Here, we compare the execution time taken

by AddBlock() and that taken by DeleteBlock(). The test

results are shown in Fig. 6. In this experiment, we assume

that the user made 5000 moves. The chart shows for each

data set, the time taken by AddBlock() and that taken by

DeleteBlock() seperately. For example, for data set A, the

time taken by AddBlock() is 2.36 sec, but the time taken

by DeleteBlock() is 0.62 sec. We can see how efficient

DeleteBlock() is. Note that for up, down, left, right moves,

we only need to call AddBlock() 3 times. However,

without having DeleteBlock(), we need to callAddBlock()

6 more times. In other words, currently, there are 21 block-

block comparisons, however, without DeleteBlock(), there

are 15 more block-block comparions. The reason is when

ith block is added, i-1 block-block comparisons are needed.

Fig. 6 Comparison of execution time between AddBlock() and

DeleteBlock()

Mobile users move in 8 different directions. Among them

four types of moves, such as left, right, up, or down moves,

use DeleteBlock(i, j) and AddBlock() 3 times each.

However diagonal moves uses DeleteBlock(i, j) and

AddBlock() 5 times each. We compared the execution

time assuming that the user made 5,000 moves. Fig. 7

shows the execution time. Roughtly, ratio of diagonal

moves to other type of moves is 1.378 : 1.

Fig. 7 Comparison of execution time taken by left-right type moves and

diagonal moves.

5.Conclusions

We propose an efficient algorithm for computing skylines

in sequence for mobile users. Skylines in sequence are

computed by updating the skyline that was computed just

before. In order to do so, we propose two algorithms,

DeleteBlock() and AddBlock() and a storage for ⋃ $��
%
��& .

In case that the size of SWR(k, l) is smaller than that of the

union of SR(k, l) , 0 ≤ 	, l ≤ 9 , our algorithm works

much better. Such an environment is quite common. Here

we assume the case that only one user is served. However,

the algorithm can serve many users without interference.

Experimental results show that the proposed algorithm

works better.

Acknowledgments

This research was supported by Basic Science Research

Program through the National Research Foundation of

Korea(NRF) funded by the Ministry of Education

(2013R1A1A2013124).

References
[1] I. Bartolini, P. Ciaccia, and M. Patella, “SaLSa: Computing

the skyline without scanning the whole sky,” In CIKM,

pp.405-414, 2006.

[2] S. Borzsonyi, D. Kossmann, and K. Stocker, “The skyline

operator,” In ICDE, pp. 421-430, 2001.

[3] J. Chomicki, P. Godfrey, J. Gryz, and D.Liang, “Skyline with

presorting,”In ICDE, pp.717-719, 2003.

[4] Z. Hung, H. Lu, B. Ooi, and A.Tung, “Continuous Skyline

queries for moving objects,” IEEE TKDE, Vol.18, pp.377-

391, 2006.

[5] X. Lin, J. Xu, and H. Hu, “Range-based Skyline Queries in

Mobile Environment,” IEEE TKDE, Vol. 25, No. 4, 2013.

[6] J. Kim, and M. Kim, “Skyline Computation Using Adaptive

Filters,” International Journal of Computer Science and

Information Technology & Security(IJCSITS), Vol. 2, No.2,

pp. 431-434, Apr. 2012.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 5, Oct-Nov, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 7

[7] J. Kim, and M. Kim, “An Extended Skyline Computation

Scheme for Recommendation Services in Mobile

Environments,” Journal of KIISE:Computing Practice and

Letters, Vol. 18, No.7, pp.558-562, Jul., 2012.

[8] J. Kim, and M. Kim, “Skyline Computation permitting

Dynamic Determination of Query Regions,” International

Journal of Computer Science and Information Technology &

Security(IJCSITS), Vol. 2, No.5, pp. 939-943, Oct. 2012.

[9] M.Morse, J.M. Patel, and W.I.Grosky, “Efficient continuous

skyline computation,” Inf. Sci. Vol. 177, No. 17, pp.3411-

3437, 2007.

[10] L. Tian, L. Wang, P. Zou, Y. Jia and A. Li, “Continuous

Monitoring of Skyline Query over Highly Dynamic Moving

Objects.” In MobiDE’07, pp.59-66, 2007.

[11]A. Vlachou, C. Doulkeridis, and Y. Kotidis, “Angle-based

space partitioning for efficient parallel skyline

computation,”In ACM SIGMOD, pp. 227-238, 2008.

[12] Y.Y. Xiao, Y.G. Chen,“Efficient distributed skyline queries

for mobile applications,” Journal of Computer Science and

Technology, Vol. 25, pp.523-536, 2010.

[13] Y. Xiao, K. Lu, and H. Deng,“Location-Dependent

SkylineQuery Processing in Mobile Databases,” In WISA,

pp.3-8, 2010.

[14] B. Zheng, K.C.K. Lee, W.C.Lee,“Location-dependent

skyline query,” In MDM, pp.148-155, 2008.

